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ABSTRACT

This report considers the general problem of determining

the minimum period of oscillation, regardless of waveshape, for

a class of electronic oscillators, one member of which is a tunnel-

diode oscillator having a resistive-inductive load. Analysis shows

that the minimum period of oscillation is never obtained for a

harmonic mode oftoscillation. The results are confirmed by

experiment.

For the problem at hand, a large-signal (nonlinear) analysis

must be made which requires various techniques for solution of the

nonlinear problem. A commonly accepted large-signal model for the

tunnel diode is used and both piecewise linear and cubic polynomial

approximations are used for the tunnel-diode static negative resis-

tance characteristic. Both methods of approximation show that the

minimum period of oscillation occurs for the case of zero external

inductance and a load resistance equal to zero or approximately

equal to zero.

Two methods of solution of the tunnel-diode oscillator equation

are used. Computer solutions, involving a piecewise linear approxi-

mation to the tunnel -diode negative resistance characteristic are

used for cases of highly nonsinusoidal oscillations. If a cubic

polynomial approximation to the tunnel-diode negative resistance

characteristic is used, analytic solutions are found by means of a

perturbation technique (Lindstedt method). From the piecewise

linear solutions it is seen that there are many factors that influence

the shape of the curve of period of oscillation with the load parameter.

The tunnel diode oscillator may operate as a soft oscillator,

hard oscillator, or be truly bistable. The conditions for deter-

mining the type of operaton are given.
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I. INTRODUCTION

The commonly accepted circuit model of the tunnel diode is shown

in Fig. 1. If it is assumed that the tunnel diode operates only in the

negative conductance region,, the i = f(v) characteristic can be approxi-

mated by i = Gav , where Ga is a linear negative conductance. The

above assumption requires that the tunnel diode oscillator be a har-.

monic oscillator The minimum period of harmonic oscillation can

never be less than

T 1 C/I Galmrin =T=2
c 1Ial s

The reciprocal of T min' fc' is sometimes called the cutoff frequency.

The usefulness of the above is limited for two reasons. First, there

exist some tunnel diodes for which it is not possible to obtain a harmonic

or near harmonic oscillation. Second, the above expression is derived

from a linear analysis. Consequently, the nonlinear effects of a com-

plete cycle of operation are not included.

The expression above for Tmin is found from an inspection of

the real part of the input impedance of the tunnel diode for sinusoidal

frequencies.

Zd(jw) = Re Zd(j) +;Imag Zd(ic )

Ral )+( C + wL)=(s G G2+ W C 2+ G + C2

a a

A pure harmonic oscillation is by definition a single frequency sinu-
soid. The minimum period rather than the maximum frequency of
oscillation is used in this paper to avoid ambiguity for nonharmonic
(nonsinusoidal) waveforms. For the latter the frequency of oscil-
lation may be defined as the reciprocal of the period of oscillation,
i. e. , the frequency of the fundamental Fourier component of the
waveform.
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If R < - a frequency, wc P exists where the real part vanishes.

If L is the proper value, or if inductance can be added as shown in Fig. 2a,

such that Imag Zd(j~c) = 0, the circuit consisting of the tunnel diode and

a short circuit or the inductive load will oscillate harmonically with a

frequency wc" For some tunnel diodes, L s may be too large to accom-

plish this resonance at c. It is commonly accepted that for such a situ-

ation a capacitive load should be introduced to provide the resonance at
1

w as shown in Fig. Zb. However, the total linearized circuit consisting

of the tunnel diode and the capacitive load then has an additional natural

frequency (a total of three). The added natural frequency may lie in the

right half plane. This provides a regenerative mode which may be domin-

ant and lead to a relaxation oscillation when one considers the actual

nonlinear circuit operation. For many available tunnel diodes, this situ-

ation arises.

It is evident that the minimum period considerations above are limited

since the nonlinear behavior of the circuit is not included. In this paper,

attention is centered on the general minimum period problem for the

simple tunnel-diode oscillator having a series inductive-resistive load as

shown in Fig. Za. For this circuit, the nonlinear equation which describes

the circuit is of second order and available techniques can be used in the

analysis. The problem is to establish the minimum period of oscillation

regardless of the wave shape of the oscillation by varying the load's para-

meters. It is shown that the minimum period does not occur for the har-

monic mode of oscillation.

For a discussion of the bounds in the R. H. P. of natural frequencies for
linear active circuits and devices see, E. S. Kuh, "Regenerative Modes
of Active Networks", Trans. IRE, Vol CT-7, No. 1, March 1960, and
C. A. Desoer and E. S. Kuh, "Bounds on Natural Frequencies of Linear
Active Networks", Proc. PIB., Active Networks and Feedback
Systems, Vol. 10, pp. 4157439,, 1960.

For the circuit of Fig. 2b, where a capacitive or conductive-capacitive
load is used, the nonlinear differential equation describing the circuit
is of third order. In general, solutions for equations of third order

orhigher,must be found for specific element values using numerical
techniques.
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In Fig. Za, the labeled elements are as follows:

i = f(v) represents the nonlinear, static i-v characteristic of the tunnel

diode as shown in Fig. 1.

C is the diode junction capacitance and is assumed to be a constant.

L is the diode lead inductance.
s

R is the diode series resistance.s
R L is the externally added resistance.

LL is the externally added inductance.

It is convenient to use a suitable transformation of variables to obtain

an i' .v' characteristic having a new origin which is in the negative conduc-

tance region as shown in Fig. 3b. The circuit model of the oscillator using

the new variables is shown in Fig. 3a. Note that L = L L + L s and

R = RL + R s . In the work to follow the primes are neglected for simplicity.

II. .METHODS OF SOLUTION

The nonlinear differential equation of the circuit in Fig. 3 is

R f'(v) + v + RI(v) = 0()
L + +LC

where
d df(v)

Note that this equation differs from the Van der Pol oscillator equation.

The Van der Pol oscillator equation is of the form

U + 1G + f'(U) + U = 0 (Za)

2 -
U - E (I-U )U + U 0 (Zb)

In the second equation above, the usual cubic approximation is used

for the nonlinear i-v characteristic. The minimum period of oscilla-

tion for a Van der Pol oscillator described by (Zb) is obtained for the

harmonic mode. This can be shown by developing an expression for

the period as a function of E for e small and E large and joining these
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curves. 2,3,4 Although this result is true only for the cubic approximation
5

of i = f(v), leading to (Zb), it seems reasonable from the work of Haag and

Stoker 6 to assume that the harmonic mode also produces the minimum period

of oscillation for a piecewise linear approximation for i = f(v).

In contrast to the Van der Pol equation, note in (1) that both the v and

terms contain coefficients that are functions of the dependent variable.

Hence, the conclusion concerning the minimum period of oscillation just

drawn for the Van der Pol oscillator cannot be applied.

A number of methods are available for the solution of (1). For particular

values or graphs of the circuit elements, graphical phase-plane analysis

can be used to establish a limit cycle. From the limit cycle, information

as to the output period and output waveshape may be obtained. However,

inherently low accuracy of the phase plane method is undesirable in treat-

ing the minimum period problem. Furthermore, it is difficult from graph-

ical analysis of specific examples to draw general conclusions as to the

conditions for- obtaining the minimum period of oscillation.

In this paper two other methods of solution are used. The first method

is to use a three segment piecewise linear approximation to the i = f(v)

characteristic and to solve the resulting mixed boundary condition problem

using a digital computer. The second method is to use a polynomial
3

approximation for i = f(v), e. g. , f(v) =- a v + yv and obtain an expansion

for the reciprocal of the period as a function of the parameters of the

i = f(v) approximation and the fixed circuit elements. Such expansions

can be found by means of the Lindstedt method 8 and are valid for the

case of nearly harmonic oscillations.

A piecewise linear approximation to the i = f(v) characteristic is

shown in Fig. 3c. Because of the linear segments or portions of opera-.

tion, a complete period of oscillation can be separated into active and

decay modes... When the voltage, v, in Fig. 3c has a value

- v° < v < vo, the circuit is said to be in the active mode. In the active

mode the i = f(v) characteristic is considered as a linear negative con-,

ductance of value Ga . When the voltage has a value v > v o, the
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circuit is said to be in the decay mode. In the decay mode the i = f(v)

characteristic is considered as a linear positive conductance of value

Gd together with a Thevinen equivalent voltage source, For simplicity

the two positive conductance regions of the i = f(v) characteristic are

assumed to have the same slope. Note that for a complete cycle of opera-

tion, two excursions are made in the active mode and one excursion in

each of the decay modes.

The characteristic equations of the circuit in Fig. 3a during the active

mode and decay modes are:

Active mode:

G

+ (R + (1 + RG)V = 0 (3a)
1 L -d V 1 i (1C + IGv

Decay mode:

+ (R Gd
" C- + - - ) + -L(1 + RGd)Vz (3b)

Equations (3a) and (3b) are linear equations; therefore, we may intro-

duce magnitude and frequency (time) normalizations such that the normal-

ized values of L and C are unity, i. e. , L = C = 1. These normaliza-n n
tions simplify the solutions. The characteristic equations become

Active Mode.
R!

v I + (Rn + G an)V + (1 + RnGan)v = 0 (4a)

Decay Mode:

V2 + (Rn+ Gdn)V 2 
+ (1+ RnGdn)vZ = 0 (4b)

where 0 1 = d'-T ; R, Gan Gdn are the normalized values of R Pa,
and Gd respectively.

Since both (4a) and (4b) are linear equations, the concept of natural fre-

quencies of a specific mode can be used. It is seen later that the loci

of these natural frequencies are a great aid in establishing the possible

performance of the oscillator. The natural frequencies of the active

and decay modes are
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Active Mode:

-(R n + G an) Rn -G an) 2 4P an I 2 (5a).

Decay Mode:

-(R +Gd) R Gdn) 4

PZ, 3 - z 2 (5b)

The possible loci of the natural frequencies in the complex frequency plane

of both modes are plotted in Fig. 4 for typical values of Gan and Gdn as the

parameter R is varied.n

It can be seen in Fig. 4b that the natural frequencies for the active

mode may cross the jw axis. At the point where these loci cross the jW

axis a pure harmonic mode is obtained. Ntice also that for certain values

ofGan (I G an > 1) the loci of the natural frequencies as shown in Fig. 4a

do not cross the jw axis for nonzero values of w. For this case it is

clear that a harmonic oscillation is impossible to obtain regardless of the

value of the parameter R nn

III. COMPUTER SOLUTIONS

Through the use of digital computers the period of oscillation can be

determined as the parameters Rn, Gdn' and Gan are varied. For con-

venience we normalize the i = f(v) curve so that the active mode exists

for -1< v < 1, i.e., in Fig. 3c v. 1. The general solution for the ac-

tive mode, (4a) is

Po PlTa
YT., ) = C 0 e a + C 1 e P0 > P (6)

Svl 1

The general solution for the decay mode, (4b), is

P c 2d P3 "rd
vZ(Td) - v 3 (Td) C 2 e + C 3 e + G4

v2 <-1, v 3 >1 (7)
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-1

It is to be emphasized that separate time origins are used for each mode.

The mode sequence for a complete period is chosen as follows:

Active I v1(O) = +1 to v 1 (T 1 ) = -1

Decay 1 v 2 (0) = -i to v.2 (r 2 ) = -1, T 0

Active Z v1(0) = -1 to Vl(Tl) = 4.1

Decay Z. v3 (0) = +1 to v 3 (T 2 ) = +1, T 2  0

Because of the symmetry of the complete solution, only the first two modes

need be considered. The constants Cop C1, C and C 3 are unknown constants

to be determined from the boundary or matching conditions of the problem.

These conditions are that voltage and its derivative are matched at the bound-

ary of active and decay modes, and that the solutions be periodic. The con-

stant C 4 in (7) is a known constant which can be found from examining the

equivalent circuit.

= Gan Gdn (8)C4 G 'n + i/rnGdn n

Data has been obtained on a computer which gives the time in the active

mode, T 1 , the time in the decay mode, T2 , and the total period, T = Z(T 1 +T 2 ),

for various values of Gan' Gdn, and R n . The normalized values chosen

for G are -. 5, -1. 5, and -5. This choice was made to obtain the threean
distinct loci of the natural frequencies in the active mode as shown in Fig. 5.

A ratio of N = - Gd/Gan between I and" 6 satisfies the f(v) characteristics

of commercially available tunnel diodes; therefore, the values of N used

for this stu8y were chosen to be N = 1, 3, and 6.

A summary of the results for G an= -5 is presented in Table 1 and in

the curves of Fig. 6. The loci of the natural frequencies of the active

and decay modes are also shown in Fig. 6. It is to be noted that for this

case, the natural frequencies of the active mode do not have a jw axis
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crossover except at the origin. It is seen that the minimum period of oscil-

lation occurs for Rn = 0. A physical explanation for this is as follows. In

the decay mode, for the chosen values of N, the natural frequencies are al-

ways real; therefore, v2(1rd) decays monotonically toward C4 . If sustained

oscillations are to exist, C4 must be greater (more positive) than -1. This

is evident from an examination of vZ(Td) shown in Figs. 7a and 7b. From

(8) it can be seen that as R increases towards - 1/Gan' C4 decreases toward

- i. Consequently, the time in the decay mode increases rapidly as Rn

approaches - I/Gan. In addition, the time in the active mode also increases.

This is a result of the rapid decrease of v{ (0) = - v' (T 2 )'caused by the
asymptotic approach of v2 (Td) to -I, cf, the slope of curve a, Fig. 7.

For Rn greater than - 1/Gan' C4 is less than - 1, and the circuit will never
get out of the decay mode and back into the active mode, cf, curve b, Fig. 7.

Hence, sustained oscillations are not obtained.

A summary of the results for Gan = -1. 5 is presented in Table 2 and

in the curves of Fig. 8. The loci of the natural frequencies of the active

and decay modes are also shown in Fig. 8. It can be seen that the minimum

period of oscillation does not occur exactly for R = 0. However, the valuen
of Tmin is not much different from T for Rn = 0. The factors influencing

the shape of T vs R curve in this case are more complex than in the pre-n
vious case. For a value of R n greater than 0. 5, the natural frequencies

in the active mode are real, and the shape of the T vs R curve for thisn
range is explained by the same reasons as given above for Gan = -5. This

is even true for N = 1 (Gdn = 1. 5) where the natural frequencies in the decay

mode are complex. Fqr the latter, however, the natural frequencies lie

near the 135 and 225 degree radials, and the decay mode solutions do not

have large o'scillatory terms. The initial decrease of T'for R n increasing

from zero is explained by the decrease of T Z' the decay time. This ef-

fect could be anticipated from the loci of the natural frequencies in the

decay mode. For example, note that for N = 3 and 6, the natural frequency

in the decay mode which is nearest the origin for Rn = 0 steadily moves

away from the origin as R n increases. This indicates a tendency for -2
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to decrease. In contrast, the time in the active mode, -T1, continually in-

creases as is expected from the nature of the loci of the natural frequencies

in the active mode, i.e. , both the real and imaginary parts of p0, 1 decrease

as Rn increases from zero. Eventually the increase in T 1 is dominant over

the decrease of T., and a minimum in the T vs R curve results.

Computer results for Gan = -. 5 are not listed. For this situation, the

active mode natural frequencies may cross the jaxi-& atnon.ecakues of W.

The main result of the computer solutions for G = -. 5 was to show thatan

the minimum period should occur for small values of R and not at the "JWn

axis crossover. For N = 3, the approximate minimum period is 6. 4. The

accuracy of the results was somewhat in doubt, however, since the m'ethod

of computer solution that was used created a convergence problem when

the solutions became almost harmonic. There may also be a problem due

to the fact that since the oscillations are nearly harmonic and of small

amplitude, the piecewise linear approximation to i = f(v) may be in con-

siderable error due to the sharp break points at v = + 1. Consequently, an

analytic solution for the period in the neighborhood of harmonic solutions

is used.

The question can now be answered as to the effects of adding inductance

in the load. In the above work, normalized values of parameters were used.

In particular,

actualG =G -normalized = G actualan a a acttul

T = T - normalized = T actual/ L actual C actual

As inductance is added, Gan becomes larger. From Table 3 it is seen

that the normalized minimum period becomes larger as Gan increases.

The actual minimum period will, of course; be even larger after denor-

malizations. Consequently, the conclusion can be drawn that the minimum

period is obtained when no load inductance is added and the load is a pure

resistance of 4 certain value.
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TABLE 3

Gan = 0.5, N= 6 T = 6.60

0.5, N =1 T = 6. 35

Gan = 1. 5, N=1 Tm = 6.92
N=3 T =8.16
N= 6 Tm = 8.96

Gan= 5, N= 3 T = 17.52
N = T m = 12.94
N =6 T l = 19.76

IV. ANALYTIC SOLUTIONS

To obtain an analytical solution to (1) the i = f(v) characteristic is ap-
3

proximated by i = - cv + yv and use is made of the Lindstedt method, a

perturbation techid.que, The result is a solution for the period as a function

of the parameters of the problem. The details of the Lindstedt method are

given in the Appendix A. The final results are:

2o [l+ ./ 1% 3R 2 -

- "L 2 P 162- (1 + 0 2]

where C < C , E > 0

0 CL

Note that a < C/L and f >A0 includes all possible cases of non zero

ja axis crossings of the roots of the characteristic equation of the linear-

ized oscillator. The constraint that a < /CL implies that 0 < E <1.

Thus for any value of a, L, C, and R, providing a <JC-/L and c > 0

the expression for the period, T, as given by (9) should be quite accurate.

The first two terms of (9) are the most important, and it is shown below
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2

that the contribution due to the E term is usually of the order of a few percent.

An examination of the first two terms of (9) reveals that dw < 0

~ 0

Thus the minimum period of oscillation is not obtained for e = 0, i. e., the

harmonic mode. In particular, it can be shown that considering only the

first two terms of (9) the minimum period of oscillation occurs for R = 0.

To establish the effect of higher order terms of (9), evaluations of
2

the E term were made using a digital computer. For representative

22cases the contribution from the e2 term was approximately 5 percent or

less. Therefore, if the contribution from the e 2 term is included, the

minimum period of oscillation occurs for R slightly greater than zero.

Since R = Rs + RL, the minimum period of oscillation for E > 0 and

a < N$C-T will occur for R L ; 0 (R = R s). Furthermore, an examina-

tion of each of the terms of (9) clearly shows that the minimum period

of oscillation occurs for the minimum value of L, i. e. , L = L . For the

analytical solution this result is consistent with those obtained for the

piecewise linear solutions.

V..BISTABILITY AND HARD OSCILLATIONS

In section 3 it is stated that for the example of Gan = -5 oscillations
1ceased when Rn was increased to. a value - . In general, as Rn is

increased to a value greater than- I an at least one active
an

mode natural frequency moves into the LHP, and C4 becomes less than

-1. When the active mode natural frequencies are real and Rn = -G 1

the circuit makes a transition from a soft oscillator to either a hard an

oscillator or a bistable circuit. This is explained below.

The dc load line may intersect the i = f(v) characteristic at one

or three points. For a single intersection as shown in Fig. 9, it can

be shown that both natural frequencies of the active mode are in the
*

• . right half plane and the circuit is ac unstable. Therefore, oscillations

This is shown by putting the condition for one intersection of the dc
load line .and the i = f(v) characteristic into (6). From this, one can
shQw that unless the natural frequencies of the active mode are real,
with one in the LHP and the other in the RHP, there is only one inter-
section of the dc load line and the i = f(v) characteristic.
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will build up spontaneously. This is what is referred to as a soft oscil-

lation. It is possible, however, to achieve oscillations when one of the

natural frequencies of the active mode is in the right half plane and the

other is in the left half plane. In this situation the dc load line intersects

the i = f(v) characteristic in three places as shown in Fig. 10. Two of

these intersections are stable. This situation may lead to so-called hard

oscillations, that is, if the circuit is initially at rest at one of the two

stable points, a. sufficierntly Targe excitation of the circuit may result in

self sustaining oscillations.

Inspection of the constant C 4 enables one to rule out the possibility of

hard oscillations for many cases. If the decay mode has two real natural

frequencies, and if the value of C 4 is less than -1 (more negative) no

self sustaining oscillations can exist. One then has true bistability. The

conditions on G and R for this are:
an n

Ga - Gd

C 4 = -1 Gdan Gdn

4 Gdn +IRn

(10)

R
n an

Rn = - /G is the condition for the natural frequency, p1 , to move to

the origin. Consequently, no hard oscillations are possible for real

decay mode natural frequencies.

If the decay mode has a pair of complex natural frequencies, the

problem is more difficult. In this case, even though C 4 is less than -1,

the oscillatory part of the decay solution may carry v( Td) to the edge

of the active mode and self sustained oscillations may occur cf, Curve (c),

Fig. 7. In Appendix B, a method is given to solve for conditions neces-

sary for hard oscillations.

Since a hard oscillator requires an excitation to start it oscillating,

it is of interest to know just how much of an input must be supplied.

This can be accomplished by constructing a phase portrait in the phase



plane. For hard oscillations, an unstable limit cycle is present.

This limit cycle is a locus of points such that if operation is started out-

side this locus, self sustained oscillations will occur. If the excitation

is such that the initial point is inside this locus, the circuit will settle

to one of its stable points. Limit cycles for a hard and soft oscillator

are shown in Fig. 11.

VI. EXPERIMENTAL RESULTS

Experimental oscillators have been built using a germanium tunnel

diode with a static i-v characteristic as shown in Fig. lZa. From this

and other measurements one finds the following characteristics for the

tunnel diode

L 6x0"9 h
s

C 7 pf

Rs  l-l. 5 0

= -G = 4.6xi0- 3 mho.a

In Fig. 1Zb the actual i-v characteristic of the tunnel diode is repeated

and the cubic and piecewise linear approximations used for the Lindstedt

and piecewise linear solutions respectively are included. For both

methods of approximation a bias point of 150 mv was chosen. A value of
G

N= 4.9 was used for the piecewise linear approximation. From
an

the figure it is seen that the piecewise linear approximation is quite good

in the positive resistance region on the left and in the negative resistance

region, but there is considerable error for the positive resistance region

on the right. A four segment piecewise linear approximation might be

used to obtain a better fit by using the extra segment in the valley region.

The cubic approximation tends to spread the error more evenly on

the left and the right, but it is difficult to say whether this leads to a

better overaill approximation.

A closed curve, C, in the phase plane is called an unstable limit cycle
if it is approached by trajectories, C; both from the inside and the out-
"side for t = - co.
*A quadratic term was added to the cubic approximation to give a closer
approximation tothe yctual i-v characteristic. The assumed form then
became i = -av' +v +yv 3 .2 It was found, however, that by using the

Lizidstedt method, the term Pv had no effect on the frequency to first
order in F.

-14-



The first oscillator was constructed to verify the Lindstedt and

piecewise linear analysis techniques for the case of almost harmonic

oscillations. For the case chosen, L = 50L s , which resulted in a

normalized conductance, Gan' of -. 954. In Fig. 13 is shown a graph

of normalized period, T, versus normalized resistance, Rn, for both

the Lindstedt and piecewise linear analysis techniques, as well as the

experimentally obtained curves. Two experimental curves are given to

illustrate the effect of a change in the bias point. The bias of 130 my

corresponds to operation about the center of the negative resistance re-

gion of the static i-v characteristic.

The second oscillator was constructed to verify the piecewise linear

analysis technique for the case of nonharmonic oscillations. For this

example a normalized value of G = -1. 75 was used. This choice of
- 6 an

Gan required L to be 1. 011 x 10 Henry. In Fig. 14 is shown a graph

of normalized period versus normalized resistance for the piecewise

linear analysis technique and for the experimentally- obtained curves.

Again two bias points are used for the experimental curves as explained

above.

From an examination of Figs. 13 and 14 it is seen that the agreement

between the experimental and analytic curves is adequate considering the

approximations involved in the inalyses. In addition, the agreement be!

tween the Lindstedt and piecewise linear solutions in Fig. 13 is quite

good considering the wide difference in the two methods of solution.

VII. CONCLUSIONS

'This. paper considers a -simple tunnel-diode oscillator having a

resistive-inductive load. Using both piecewise linear and cubic ap-

proximations to the tunnel-diode static i-v characteristic, we have

shown that the minimum period of oscillation of the tunnel-diode oscil-

lator under consideration is never obtained when the oscillator is ad-

justfed for the highest frequency in-the harmonic mode. Furthermore,

for the piecewise linear approximation, if the natural frequencies in

-15-



the active mode are real for all values of R, then for representative

values of N= Gdn/Gan the minimum period of oscillation is obtained

for RL = 0 or RL z 0. These results are in contrast with a Van der

Pol oscillator for which the minimum period of oscillation is achieved

for the harmonic mode.. Finally, it is seen that adding any external in-

ductance serves to lengthen the period of oscillation.

Two methods of solution of the tunnel-diode oscillator equation have

been used. Computer solutions, involving a piecewise linear approxima-

tion to the i = f(v) characteristic, have been used for cases of highly non-

sinusoidal oscillations. Analytic solutions, using the Lindstedt method,

have been used for cases of nearly sinusoidal oscillations. From the

piecewise linear solution, it can be seen that there are many factors

that influence the shape of the T vs R curve. Some of these factors ate

related to the loci of the natural frequencies of a particular mode. For

the analytical solutibns, the i = f(v) characteristic is approximated by
3

a cubic polynomial, i = -a v + yv 3 Additional terms could be added to

the polynomial to achieve a better fit to the actual i = f(v) characteristiC.

For such approximations, the Lindstedt method could still be used, bdt

with correspondingly more effort. As mentioned above, the addition of

a term Pv 2 to the cubic approximation had no effect on the frequency

(period) to first order in E.

It has been seen that the agreement between the experimental and

analytic curves of T versus Rn is adequate considering the approxima-

tions involved in the piecewise linear and Lindstedt methods of solution.

The tunnel diode may operate as a soft oscillator, hard oscillator,
or be truly bistable. The conditions for determining the type of opera-

tion are given.

As a final point, this study suggests a related problem. An inter-

esting and practical problem is to determine the conditions for maxi-

mum output power at a given sinusoidal frequency or alternately to

determine the condition for the minimum period of oscillation for a

given fundamental power output.

-16-



Table I

G=-5
a

G dn N Rn for Tmin T min

5 1 0.0 12.94

15 3 0.0 17. 50

30 6 0.0 .19.,76

Table II

Ga = -1.5

Gdn N Rn for Tmin Tmin T for R =0

1.5 1 .05 6. 92 6.94

4.5 3 .05 8.16 8.20

9.0 6 .15 8.82 8.96

APPENDIX A: THE LINDSTEDT METHOD

Consider the following nonlinear differential equation

i+ n X+ Ef(x,x ) = 0 (A-1)

We assume that it has a periodic solution. Equation (A-i) is to be

solved by the Lindstedt method for sufficiently small e. It is

desired to find a periodic solution x(t), with a certain unknown period,

T. A new independent variable is first introduced.
ZwtT t -T-(A-2)

The convergence of the Lindstedt method is a very difficult
question. Although it is customary to assume convergence, Poincare
has shown by an example that the series can diverge.
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Equation (A-1) becomes

( .+ X+ r f(, ) 0 (A-3)

where ' = d/d-

Next it is assumed that the solution X(T) can be written in the form
O

0
X()=ier n() (A-4)

n= 0

where the LJn are periodic functions with period Zw. The n are repre•
n n

sented by their Fourier series. In addition, assume w has the form

00

W= A n (A-5).

n=O

where the n are constants.

A substitution of these series expansions for w andX(T) is made and

a series of recurrent differential equations is obtained which results from

equating to zero the coefficients of equal powers of e. It is convenient

to choose the time origin such that

77- ) = d T=) = 0 (A-6),

The method of Lindutedt consists of determining the coefficients

n in the subsequent stages of the recurrence procedure so as to eli-

minate terms with the fundamental period 2w. These terns, if left in,

would lead to so-called secular terms, i. e., terms of the -form

sin-, T COS T (A-7)

These terms must be eliminated since one requires the series repre-

sent the solution for 0 < T < O.

The Lindotedt method is now applied to the tunnel-diode oscillator.

-First approximate the static i = f(v) characteristic by

3
i a'v + Yv , a>0, Y >0 (A-8)

-18-



After substitution of (A-8) into (1), one obtains;

R 3N + (-C + -a )Rv
. ... +=L 0 (A-9)

It is necessary to put (A-9) into the form of (A-I). In particular, a

parameter must be found for the expansions such that when this parameter

equals zero, the solutions are that of a harmonic oscillator. The proper

form of (A-1) is obtained using the following in (A-9).

T -I t (A-10)
qL-C

aL - RC- (A-Il)

v = hX (A-lZ)

h ' 3y' (A-13)

The result is:

I Z ' RX 3
X +X:(l- aR)= F[(I X X - 3 ] = f (KX) (A-14)

where = dldT'

We now use (A-2). The basic equation becomes

2 XI + X(l - aR)'+ e [X3+ WX2 X' - WX'] = 0 (A-15)

where ' = d/dT

Equations (A-4) and (A-5) are introduced and the time origin is

chosen using (A-6).

The result of equating to zero the coefficients of equal powers of c

gives

-19-



0 2 I
0 . + 4o(1 - R) =. 0 (A-16)

1 0, + 2" ( - aR) + Zpopl + "3 2 ' 0

+0o++ 0ooo- 3 L~ 00 0

(A-17)
2 2 2 1 "

4 : oI4 2 + 2(I - )+ 00 14i +0( p I 21o0p)4
2' 2'+ 00 l+ I314b040 + 2P 0P00 blJ1 0 - %0 li - 81LI 0

+ R J 07 IJ 0 (A-18)

Solving (A-16), one obtains

= 0 Cos r (A-19)

PO - aR (A-Z0)

These results are substituted into (A-17) and several trigonometric

identities are used to obtain:

P O( l + P1 = 0 --4- - CL"' I sin,,r, + [2a0p0p 1  - 4 COST

3 3
. J~l~. 0 Ra 0

Po(i+ Ai) 7o-r- ojsn +o ~ 0 p 1 -~ ]CS
1 0cos 3T + ; sin 3 T (A-21

The secular terms are removed by choosing

a0 =2 (A- 22)

F --- -  (A-23)
I 0 Z1 - aR
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Equation (A-Z1) now reduces to

P0( l + i) = 2P0 sin 3 i - RJ os 3 T (A-24)

The general solution of (A-24) which also satisfies (A-6) is

C3 1 L j -
= sinT - 1- sin 3T f-2 0 cos 3T+ p COST

2

(A-25)

Putting the previous results into (A-18), applying several trigono-

metric identities, and removing the secular term, one finds

2 C
= R (A- 26)

p - ° L (A-27)

The expressions just foundfor P0, Pl, and PZ' are now used to find w.

C 2 3R C 2

R.L 1 2]P 0 1 + - 26 C 0 (I + 2 ) (A- 28)

2p% 16po P 0

where a< E > 0

2 ]I-RC
ET ,

I0:- a R, e = a A RI

'The. proper time denormalization can be introduced to obtain the ex-

pression for the actual period.

2w W, = (A-29)
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APPENDIX B: BISTABILITY AND HARD OSCILLATIONS

Whether the circuit will be bistable or be a hard oscillator can be

determined by a study of the piecewise linear solution. The circuit is

either bistable or a hard oscillator if and only if one active mode natural

frequency, p0 , is located on the positive real axis and the other, pI, is

located on the negative real axis. In 1() , therefore, the term

C1e 1 a decays to zero with. time. Consequently, given v1(0) = l,the initial
state of the mode must be such that C0 is negative. For the investigation

of the border line situation, assume Q :< 0 and .0 < I C0 
< < 1. The time

in the active mode, Tl,,is then large and

Vl(Ta) C0 e a (B-1)

Since v,(T 1 ) = -1

1 -1n( (B-2)TI = -* In )(B)

PO 0

1 ( = - P0

these values can be used together with the decay mode solution to

establish the condition for self-sustained oscillation. For the decay

mode,, the discussion in section 5 indicates that it is necessary to have

complex decay natural frequencies. Equation (7) can then be written

as follows and the matching condition with the first active mode can be

included, i. e., v 2 (0) = Vl (TI), v 2 (0) = vl(Tl)

O ZTd
v2 (rd) = - Are sin(la2Td + *Z) + C 4  (B-3)

where

-a -2(l + C4 )

Z(l+ C4 " P0
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If it exists,T 2 is found from a solution of the transcendental

equation (B-.3) using v2 (T Z) = -1, T 2 4 0. The final condition to be

satisfied for a self-sustaining oscillation is found from
Vl( )

CO = 10 P < 0, Vl(0) = 1 (B-4)

Since - v2(-r2) Vl(0), the necessary condition is

- vz(T 2 ) < Pl (B-5)

A procedure to investigate whether (B-,5) can be satisfied can be

developed for a computer. Thus, the existence of a self-sustained

oscillation can be established for a given example.

-23-



C

-0

i = f(v)

Figure 1 Tunnel Diode Circuit Model
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_
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Figure 2 Tunnel Diode with Load and Bias
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it= f(v') VIR

(a)

=t f(v')

v

(b)}

i =f(v)

-vo 

V

(C)

Figure 3 Tunnel Diode Oscillator
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Figure 4 Loci of Natural Frequencies
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Computer Results for Piecewise Linear f(v)
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Figure 6
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Figure 7 Plot of Possible Voltage Responses in the Decay
Mode
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Figure 8
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Figure 9 DC Load Lines

-V

Figure 10 DC Load Lines
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Figure IZa Actual Static i-v Characteristic
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L= 50 L  C C 7 pf.

T L =50 L s = 3 x 10 - 7 h.

G - -0.95412 an-

N= 4.9
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Lindstedt Experimental 130 mv bias

- Piecewise Linear Experimental 150 my bias

Figure 13 Experimental Results
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Figure 14 Experimental Results
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